If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x=3(2)^x
We move all terms to the left:
1/3x-(3(2)^x)=0
Domain of the equation: 3x!=0determiningTheFunctionDomain 1/3x-32^x=0
x!=0/3
x!=0
x∈R
We multiply all the terms by the denominator
-32^x*3x+1=0
Wy multiply elements
-96x^2+1=0
a = -96; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-96)·1
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*-96}=\frac{0-8\sqrt{6}}{-192} =-\frac{8\sqrt{6}}{-192} =-\frac{\sqrt{6}}{-24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*-96}=\frac{0+8\sqrt{6}}{-192} =\frac{8\sqrt{6}}{-192} =\frac{\sqrt{6}}{-24} $
| -2(4-4)p=-40+4p | | 8(y-5)=2y+8 | | 4(2m-2)=28+4m | | 3=20x=100 | | 45+2e=180 | | y/5-3=-1 | | -7(y+1)=-49 | | 5a+6+7a=180 | | n+5-4=13-3n | | -1+8(n-6)=97 | | 4n-5n=- | | 7^(x^2+20)=7^9x | | -4x+7x=12 | | 10r+9r=57 | | 36=46(v+8)-8v | | 3x+17/5=71/5 | | 8/0.5+4-1*2=a | | -2=-2(5+n) | | 7=9+x/9 | | 10x-10=-8x+6 | | 11x-32=5x-98 | | -40=4(x+2) | | 10/12=50/x | | 4x+49=x+64 | | 7/161=23/x | | 7x-60=3-2x | | 3(x-4)-2(3x+4=4(3-x)+5x+4 | | 182=14k | | 8=b+17 | | x+2=-2x+3 | | 10x-89=141 | | n/8.5=2 |